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ANATOMY OF SOME TIME SERIES MODELS

GEORGE E. P. BOX

INTRODUCTION

Many classical statistical models assume that data y,,Yy,:-,y, Ray be directly

repr ted by independently and identically distributed variables. 1Indeed, some of us

have so long been exposed to this idea, in courses, textbooks, and papers that we almost

automatically write a relation for the joint distribution of random variables 27 ZYRRENS N

as
n

p(y',yz,...,yn) = I f(yi) 1
. ‘-‘
and we almost believe it.
In particular, models are frequently employed of the form

Yy = f“ te, (2)

where y, isa “"dependent” (output) variables, f“ is a function of "independent® (input)

variables and parametera, and e, is an error. It is then common to suppose that
(3)

is a sequence of random variables supposed independently and

®

where LINPYL T WOTRPY
identically distributed about zero. Throughout this paper we shall call such a sequence

“white noise”.

These assumptions are, of course, sweeping ones. When they are not approximately

true, results derived from their use may be very seriously in error. Alternatively, to

take a more positive view, the explicit modeling of serial dependence can provide answers
to many important practical problems in forecasting, feedback control, the estimation of
transfer function relationships, and intervention analysis.

In these days statisticians do not ignore serial dependence, however, there is perhaps
a tendency to behave as if our subject could be divided into two pieces - one part

concerned with problems readily recognized as time series, where specific allowance is made

Spongored by the United States Army under Contract No. DAAG29-80-C-0041.
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for serial dependence, and the other part, consisting of everything else, where models like
(1), (2), and (3) may be safely employed. It seems doubtful, however, whether any such

distinction can be made.

UBIQUITY OF SERIAL DEPENDENCE, NON-STATIONARITY, AND NON-HOMOGENEITY

The attractive feature of independence is its mathematical tractability, not its
direct association with familiar phenomena within our experience. The data which we
mentally process in the conduct of our daily lives is highly serially dependent not
independent. To see how important this serial nature of our experience is, imagine viewing
the 86,400 separate frames of a one hour movie film after they had been rearranged in
random order. It is indeed the serial dependence of our experience which makes it possible
to conduct our lives in a rational manner. In particular, it allows us continually to
project recent experience and so to make mental forecasts. Comparison of what is expected
in the immediate future with actual experience leads to appropriate adjustment of ideas and
behavior.
Serial Dependence in Aqricultural Pield Trials

Although the normal linear model with independently and identically distributed errors
is often used as a framework for the analysis of agricultural field trials it is doubtful
for example whether R. A. Fisher would place any faith in such an analysis unless the
design had been randomized. Onlyithen, he asserted, could such a set-up supply an
approximation to the randomization analysis. There are many reasons for randomigzation but
certainly the need to cope with the serial dependence. which would be expected between
errors of adjacent plots is an important one.

The principles enunciated in R. A. Fisher's book "The Design of Experiments”™ are
congonant, not with a world of independent errors and homogeneous experimental material,

but with inhomogeneity and even non-stationarity. Thus the book is careful to confine

*

Methods for analyzing field trial data which take direct account of spatial correlation
have been discussed, for example, by Bartlett (1978).




itself to comparative experiments -~ not absolute experiments and the estimates of desired
contrasts are made from randomized comparisons within blocks of size eight or less. Study
of uniformity data such as that of Wiebe (1935), Figure 1, shows the wisdom of such
principles.

Serial Dependence in Industrial Data

Evidence that non-stationary error structures are also to be expected for industrial

data is provided, for example, by the devices employed in the process industries for

feedback control. Suppose X, refers to the level, at time t, of an input variable that

can be manipulated to compensate for a deviation e, from some desired output target. A
form of feedback regulation commonly found effective employs a control equation having
"proportional plus integral®™ terme. For discrete data it is thus of the form
t
X, = kge, + K, 1 e, (4)
n=0
where k, and k, would normally be of the same sign.
After differencing (4) becomes

_4) = e - Be (S)

t t-1

-X
C(Xt €

-1
with C = (k°+k‘) 8 = Cko .

If the control is effective then e, will be a stationary process implying that X

t t

follows a non-stationary process. But X,  is the compensation for the disturbance, which

consequently must also be non-stationary.

It is further possible to show that, if the dynamic relation between input and output

can be approximated by a first order linear difference equation, then (4) can provide

minimum mean square error control for a non-stationary disturbance z, modeled by
z -~z = a3 - 0a . (6)

t t-1 t t-1

TE e AT ——
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MODELING SERIAL PHENOMEWA

Randomization is impossible when the ordering of the data in time or space is not at
our disposal. It then becomes necessary to model the special characterisitcs of the system ;
arising from its serial nature. These characteristics include

error dependence and possible non-stationarity
existence of time trends
dynamic relationships between variables

feedback

i W

choice of dependent and independent variables.

In the remainder of this paper we discuss the nature of the models employed to accommodate
these characteristics. For illustration examples of fitted models are given. However, our

purpose here is only to discuss model structure, so details of the model building process

e

are not presented but can be found in accompanying references.

Linear Difference Equations
The crucial first step in showing how linear difference equations might be used in

ke

r—
i

modeling serial data was taken by Yule (1927),

————

A linear difference equation such as

= +
Y, Syt_1 WoX, 4 + WX, o (7)
can, with gsuitable choices of the coefficients (6,uo,u1), represent a dynamic
relationship between an input x and an output y. Using B for a backshift operator we

can write the relation (7)

(1-65)yt = (uom1n)pxt . (8)

More generally with &(R) and w(B) finite polynomials in B any such linear difference
equation may be written

G(B)yt ~ w(Blx, . (9)
For a stable system with the zero's of §&(B) outside the unit circle we can write (9) as a

"distributed lag” model




-
U_(!J. X T v(n)xt - 5 v Bjx - 2

y. = (10)
t §(B) "t y=0 b i - y=0

V5 %e-5

where v(B) is the transfer function and (vj} is the impulse response function of the
system. The impulse response weights vj thus determine the nature of the linear

aggregate Iv which is transferred to the output by the dynamic model.

3 =3
Stochastic Difference Equations

Stochastic difference equation models suppose that a time series {zt} can be
represented as a realization of the output from such a dynamic model in which the input is
white noise. Thus

¢(B)z_ = O(B)at (1)
where
2 2 q
¢,(B) = 1-¢ 54,8 -...-¢pap, 8(B) = 1-6,5-6,8"-...-8 B {11a)
are called autoregressive and moving average operators, respectively.

A model of this kind is often called an autoregressive-moving average model of order

(p,q) or an ARMA(p,q) model, see for example Box and Jenkins (1976).
If the zero's of 6(B) all lie outside the unit circle then we can write the model in

invertible form

B 19:) R - 2 -

& T 9m % - I(B)zt = (1-!18—123 =...)zt =z~z _, (12)
where
o
z .= ) Wz _. . (13)
-1 L, et

Thus, given the model and data up to time t-1 the conditional distribution of the
next, but not yet available, observation z, has mean ;;_1 and variance o:. It is now
elementary to calculate also the conditional means and variances for future observations
2, 3,...,2 steps ahead and so provide a basis for forecasting.

As a specific example consider the process (6) which can be written

(1-3):t = (1-OB)at . (14)

. = {1-B

e T 1-8m % (13)

2.2 -
{1 - (1-8)(1+48B+0"B teeddz =2 -2
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¥ and
- -
: :, =18 J o' Z,_, - (16)
-1 1 -1
r

Thus, for the particular model (14), ;;_‘

1th

is an exponentially weighted moving average
(ewma) of past data ending at the ¢t~ observation. The conditicnal distribution of
z, has this ewma for its mean and has variance ai.

In the model (14), ¢(B) = t-B has a zero on the unit circle. By allowing ¢(B) in
the general model to have zero's on as well as outside but not inside the unit circle a
valuable class of models is obtained for representing non-stationary systems. Also
seasonal models of period s can often be represented by using the factorization

o(2) = ¢, (B)6_(5%) 8(s) = 0, (p)8_(8%) .

Some of the issues are clarified if we consider the prohlems arising when, as
occasionally still happens, ordinary least squares is applied to the analysis of time
series data.

For first illustration we reconsider some data plotted in Figure 2 and first studied
by Coen, Gomme, and Kendall (1969). These wefe quarterly data on

Zyet Financial Time Share Index
Zye: U. K. Car Production
2348 Pinancial Times Commodity Price Index.
The original authors were interested in predicting z, using lagged values of z,

and zq in a linear regression equation which allowed for possible deterministic linear

trends in each of the variables.

with e, a random error, their model can be written

+ +
Y, = a+B t B1x1t4'82x2t e (17)
vhere
Ye " %y 0 M T Fae-6 ¢ T2e T F3e-7 (17a)
Denoting fitted values by yt' x,t, and xzt, after estimation of a supposed linear time

trend in each variable, this model is of the required postulated form

Yy, = B,(x,-x ) + Bz(xz-xzt + e - (18)

~7=
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Column (a) of Table 1 shows the results when equation (17), or equivalently (18), is fitted
by ordinary least squares. Both 8, and 82 appear enormously significantly different
from zero leading to the conclusion that the stock price z; can usefully be predicted 6

quarters in advance from knowledge of z, and z3.

Table 1
(a) (b) (c)
Error Model e = a e, = ‘et-1+.t e~e 4 = .t-e.t-1
B, x 10° 4.7(0.4) 1.8(0.9) 1.6(0.9)
az x 10 - 6.1(0.5) - 1.9(1.2) - 1.2(1.2)
;: 497 208 321
¢ = 0.82(0.10) 9 = -0.06(0.15)

Table !. Estimates of parameters with (standard error) for
the model (17)
(a) ordinary least squares
(b) with ¢ 1in (19) estimated simultaneously from the data

{(c) with non-stationary disturbance model (20).

Modeling Serial Dependence of Errors
A numt.. of models which allowed for possible serial dependence of the errors e,
were fitted by Box and Newbold (1970) using maximum likelihood.
In particular the data were consistent with a first order autoregressive model
e, = oet_' ta, . (19)
The profound differences in inference that result when ¢ is not forced to equal zero
(ordinary least squares) but is estimated from the data simultaneously with the regression

coefficients may be appreciated from comparison of columns (a) and (b} in Table 1 where it

will be seen that the previous overwhelming significance of B, and B8, now disappears.
1 2

- _
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Of the standard assumptions that errors are lormally, ldentically and Independently
distributed it has been the first two that have received most attention in the
literature. It is a measure of the importance of serial dependence that it would require
very dramatic departures from normality and/or identicality to influence the estimates and
their standard errors in the spectacular manner seen in the comparison of columns (a) and
(b) in Table 1.

Non-Stationarity and the Elimination of Time Trends

The autoregressive noise model e, = O.Bet_1 + a, is stationary with respect to time,
however, ; = 0.82(0.10) is close to unity, for which value the model become non-
stationary. Notice also that equation (17) allows for linear dependence of all the series
on time with the evident intention of eliminating (non-stationary) time trends.

Now there is no a priori reason for believing in the reality of systematic linear
components in the three series. Indeed over longer stretches of time we should expect each
series to sometimes trend ugp "ards and sometimes downwards.

A non-stationary disturbance model consistent with the data is in fact of the form of
(14)

(1-B)et = (1-68)at . (20)
From column (c) of Table 1 we see that the analysis conducted with this noise model gives
results similar to those obtained with the autoregressive model. 1In fact, in this model
8 is close to zero. Thus both this non-stationary model and the autoregressive model are
pointing to a random walk structure for the error. However, let us continue to consider
the more general situation where the noise model is of the form of (20) but 6 is not
necessarily close to zero.

We are most familiar with the behavior and implications of models for which the errors
follow a white noise process and ordinary least squares is appropriate. A useful device in
studying models with a more complex noise structure, therefore, is to transform the model

to the familiar white noise form.

-10~-




From (15)

a, = !(B)et - (21)

t € "%-1

where :t-l is an exponential moving average of the e's terminating at t-1 with

smoothing constant 0.

Operating on both sides of equation (17) with w(B) we now obtain

- = 8 - - +
Yo ¥eoy = BotBy Xy mXy eq) P B X en) Y 2 (22)

where for example Xye = is the deviation of Xqy from the exponentially smoothed

Xy, t=1

value This equation (22) may now be compared with (18).

;1,t-1'
We seen then that the fitting of model (17) with non-stationary noise (20) is
equivalent to fitting the model (22) by least ordinary squares while allowing for
elimination of stochastic trends by exponential smoothing. More generally the model noise
structure would indicate precisely what kind of smoothing should be used for elimination of

stochastic trend.

Dynamic Relationships Among Variables

Suppose, in the share price data, contributions to 2z, from and z

+ Zoy could be

3t
approximated by distributed lag models

X1p T Vi2(PI2Zpe Xy T vy3(Blzye -
Then the lag structure assumed in {(17a) is such that the impulse response functions

{

v } and (v } are zero everywhere except at lags j =6 and j = 7,
12,5 13,3

respectively, where they take values of unity.

The less restrictive difference equation models of the form of (10) (for example,
vyp(B) = w12(a)/612(a)) are clearly more likely to provide adequate dynamic models.
Notice that so far as the structure of the resulting models is concerned, after

transforming the errors to white noise as before we should have, correspondina to (22):

z B'*v,z(B)(z

17%1,e-1 " %o Y+ vy (Blizy

) + a . (23)

267%2,¢-1 e 23, e-1 t

The contributions to the response 2z, and =z 2 and  z, would thus be modeled as linear
agregates of the deviations from exponentially smoothed values with weights supplied by the

impulse response functions of the dynamic systems.

—— o - -

e




Transfer Punction Models

In the particular case of the share index data, analysis fails to show any significant
transfer. However, transfer function models of this kind have fregquently been effective.
Por illustration Figure 3 shows hourly data from the Twin Rivers study of house insulation

(Pollack and Shoemaker 1978; Socolow 1978). The estimated -odeI.

2
0.12+0_42B+0.40B 24
i . {140,.26B)(1-0.86B ) a

Y, = - x (24)
t 1-0.338 3 (1-8) (1-82%) t

allows for a highly non-stationary seasonal disturbance associated with the daily change in
temperature. After this has been taken account of the transfer function relation between
outside temperature and attic temperature can be quite accurately estimated.

Particularly in engineering and environmental problems, transfer function models, such
as the above, have often proved valuable. Also the transfer function set-up with one or
more indicator variables has provided a useful model for intervention studies (see for
example Box and Tiao (1975)). For some economic and business data, however, results from
transfer function analysis between an output Yy and input XypeXoprree has sometimes
been disappointing. 1In particular some selected x, that seemed a priori to be a
promising predictive input has in practice provided only a weak or sometimes a non-
detectible relationship. In this connection, however, it must be remembered that denoting

the output by y, an invertible time series model of the form of (11) may be written

-
- + -
v Iomyve g ta (25)
i=1
Thus this univariate time series model can employ the whole past history of y for
prediction of future values. Any useful x, must supply information that is additional to

this.

Explanation of the model is as follows. The temperature inside the house is going through
a large daily cycle which, using a seasonal noise model, could be forecast from the
experience of previous days. The outside temperature X, suitably filtered provides
additional current information.

-2~
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figure 3: Hourly data outside temperature x, and attic temperature

Yt for an experimental house with estimated model.
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Feedback

In any case the usefulness of transfer function models of the kind considered above,
is confined to those examples where the relationship is unidirectional. 1In engineering
examples, when feedback occurs, its pattern is usually known from the physical nature of
the system and so it can be modeled directly (see for example Box and MacGregor (1976)).
However in business and economic systems the nature of the feedback is usually unknown. In
the share price example, for instance, the model (17) tacitly assumes the structure indi-
cated in Pigure 4(a), when in fact any or all of the relations in Figure 4(b) could occur.

Multiple Time Series Models

Multiple time series models can provide, among other things, a general framework
within which all possible feedback relations between k series can occur. They thus
present possible means of discovering the feedback from the data. In particular, a class
of vector models may be employed which parallels the univariate models of Eguation (11) but

with 2z and a

N now k-dimensional column vectors and !(gtgé) = E.. The autoregressive

t

and moving average parameters are replaced in these models by k x k matrices.
For example, a first order autoregressive, first order moving average model for k = 2
series would be of the form
(I-!B)-Et = (E-gn)!t (26)

or

+ a + 0

= +
¢ 1222,6-1 " 20e P %90%,eer P %0222, 040

+
21t 131,01t !

27)

+ a + 0

= +
Zae T %21%1,e-1 T 922%2,0-0 T 20t 0293, o1t 822%2, 00

-
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In inverted form such a model may be written

-
(1) + L1120

T Tz TR

., = Y v 1t

z
L e N

(29)

- 2 ':21)

-
(22)
x + § x5 +a, .
42 i

z
et T, 2,t-3 © %2t

in which each series can “"remember” a linear aggregate of its own past, together with a
linear aggregate from the past of the other series.

When a multivariate model of this kind is applied to the share price data (Tiao and
Box, (1981)) a trivariate first order autoregressive~first order moving average model is

obtained. After appropriate simplication the model implies that the system is approximated

Q by
;
? (1t -‘:z:?)z1t =a,
“ -(:::?:zzt -(:f)+ f2e @0
e e T e Ty T T T e
.045
I =|.024 .o085 .

a
.019 .023 .134

It thus appears that for the share data all three series behave approximately like
random walks with slightly correlated innovations. There is (weak) evidence that the share
price is a leading indicator at lag 1 for the commodity index. This relation, indicated in
Figure 4(c), is in the reverse direction to that assumed in Equation (17).

In general an advantage of this approach is that no prior assumptions need be made
about the feedback and dynamic interrelationships between variables and about what should
be regarded as an independent variable and what a dependent variable. Rather we can allow

the data with rather weak modeling to point to the structure.

-16=

iy« S T

SUPIE




Conclusion

The modeling of serial data is important because we live in a serlally dspendent
world.

Considerable success has been achieved in the last 50 years or so in modeling serial
dependence using stochastic difference equations.

Much, however, remains to be done. Some important current topics are:

Parsimonious parametrization of multivariate time series models (see, for example, Box

and Tiao, 1975; Reinsel, 1983).

Possible value of non-linear models (see, for example, Priestley, 1978).

Treatment of discrepant observations (see, for example, Abraham and Box, 1979).
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